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An improved numerical simulator for multiphase
�ow in porous media

I. Garrido∗;†, G. E. Fladmark and M. Espedal

Department of Mathematics; University of Bergen; Johannes Bruns gt. 12; N-5008 Bergen; Norway

SUMMARY

In basin modelling the thermodynamics of a multicomponent multiphase �uid �ux are computationally
too expensive when derived from an equation of state and the Gibbs equality constraints. In this article
we present a novel implicit molar mass formulation technique using binary mixture thermodynamics.
The two proposed solution methods, with and without cross derivative terms between components, are
based on a preconditioned Newton-GMRES scheme for each time-step with analytical computation
of the derivatives. These new algorithms reduce signi�cantly the numerical e�ort for the computation
of the molar masses, and we illustrate the behavior of these methods with numerical computations.
Copyright ? 2004 John Wiley & Sons Ltd.
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1. INTRODUCTION

The primary objective of basin simulation is to determine the possible locations of trapped
hydrocarbons. Since the hydrocarbons use millions of years to migrate, the basin structure may
change several times during the migration. It is not only the geometry and the geological data
which cause di�culties. Compared to a reservoir model, a basin model includes many more
unknowns due to the heat transport, chemical reactions and thermodynamics. Our work is
based on a compositional simulator for secondary oil migration [1–4]. This 3D model gives
full treatment of fractures and discontinuities of the medium, representing them by re�ned
cells which contain the desired lithology [5–7].
In this work we have mostly used a simpli�ed compositional model, named the binary

mixture thermodynamics model [8]. The phase calculation is related to tables for dew and
bubble points rather than fugacity calculations. In this model the oil and the gas components
may partly be in both the oil and gas phases, while the water phase is treated separately.
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The primary variables in our simulator, named Athena, are the temperature, T , the water
pressure, pw, and the molar masses, N�, for each �uid component, �. The numerical model
uses a control volume �nite di�erence box-centred space discretization technique together
with a backward Euler scheme for time discretization of the water pressure and temperature
equations and an explicit solver for the mass equation. Recently a �xed LGR method has
been successfully applied to cover discontinuities of the porous media [9]. This method does
not only allow a full geometrical treatment of fault and matrix but it also serves as a middle
step between the sequential and parallel processing, see References [10, 11] for a comparison
with other simulators. Obviously, the above discretization introduces a CFL condition that
severely restricts the time step [12]. In order to avoid the time step restriction imposed from
the CFL condition, we propose two implicit numerical schemes which deal with the mass
conservative dynamical behavior while reducing the numerical e�ort.
The main goal of this article is to present an implicit formulation and illustrate the e�ciency

of the simulator with the new methods by numerical examples. For that purpose we consider
di�erent geometries and compare the numerical results obtained by the two implicit algorithms,
based on a precontioned Newton-GMRES [13] with analytical derivatives, to those obtained
by the explicit solver. For further information on Krylov subspace methods we refer to the
classical paper from Saad [14] and speci�c applications to oil reservoirs [15]. For further
details about basin modelling we refer the interested reader to References [16–20].
An outline of the paper is as follows: in Section 2 we introduce the model to study. The

numerical approximations to the primary variables temperature, water pressure and molar mass
are given in Sections 3–5, respectively. The entries for the Jacobians in the two implicit molar
mass transport formulations are derived in Section 6; other discretization schemes are given in
References [21–23]. Then, in Section 7, we present some numerical results, and conclusions
and future work summarize the paper in Section 8.

2. THE MODEL

In this section we will give an introduction to the simulation model, which is implemented
into the general compositional simulator Athena. It is based on the symmetric black oil model
with the assumption that the water is always in water phase and any of the hydrocarbons may
be in both gas and oil phase. For more information and details about compositional models
we refer to References [24–26].
For consistency reasons we introduce the following notation; the sub index � will denote

any of the nc �uid components, while the super index l denotes any of the three phases, oil,
water or gas, in which the di�erent components or fraction of them may exist. The water
component is assumed to always be in water phase whilst the hydrocarbons are never in water
phase. Besides, discretization indices will appear between brackets as subindices for the space
and as super-indices for the time.
The molar mass conservation of a multicomponent multiphase �uid �ow �owing through

a porous media region, V , whose boundary is a closed surface, S, is given by the integral
expression

@
@t

∫
V
m� dV +

∫
V

∇ ·m�=−
∫
V
q� dV (1)
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Here q� denotes the source=sink of molar mass density for each component � with units
mol=m3s. Besides, the molar mass �ux and the density inside the region are respectively
expressed as

m� =
∑

l=phase
Cl�v

l�l (2)

m� =�p
∑

l=phase
Cl�S

l�l (3)

The entity Cl� denotes the mass fraction of component � in phase l, and further �
l=�l=Ml the

molar density of phase l, �l the mass density of phase l, Ml the molecular weight of phase
l, Sl the saturation of phase l, vl the Darcy velocity of phase l, and �p the rock porosity.
Energy conservation is enforced by the following integral expression for the heat �ow

equation

@
@t

∫
V
(�u) dV −

∫
S
(k∇T ) dS=−

∫
S
h�u dS+

∫
V
q dV (4)

where the capacity term and convective �ux are

�u=
∑

l=g;o;w
�pSlul�l + ur�r(1− �p) (5)

h�u=
∑

l=g;o;w
hl�lvl (6)

Here, the new parameters denote T the temperature, k the bulk heat conductivity, �r mass
density of rock, ur internal energy of rock, ul internal energy of phase l, and hl enthalpy of
phase l.
The Volume Balance method [27] imposes that the di�erence between the pore volume,

Vp, and the volume of all phases

R=Vp − ∑
l=g;o;w

V l (7)

has to be zero at any time. Besides, this residual volume is a function of the water pressure,
pw, the overburden pressure, W , and the integral of the molar mass for each component, N�.
Hence, the �rst order Taylor expansion of the residual R(t+�t) together with the chain rule
for partial di�erentiation of @R(pw; W; N�)=@t leads to the water pressure equation

@R
@pw

@pw

@t
+

nc∑
�=1

@R
@N�

@N�
@t
=− R

�t
− @R
@W

@W
@t

(8)

In what follows, the numerical model will be derived from the discretization of the conser-
vation equations (1), (4) and (8), using control volumes in space [28] together with backward
Euler in time.
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3. ENERGY CONSERVATION

The integral of the source term of Equation (4) will be treated explicitly for each control
volume V[i] ∫

V[i]
q dV ≈Q[i] (9)

Since the convective �ux, given by Equation (6), is small compared to the conductive �ux,
this term may be neglected or treated explicitly, in which case, the integral over each of the
boundary surfaces is approximated by the value at the upstream control volume. Denoting by
I(i) the set of indices for the upstream volume Vi, the convective �ux of Equation (4) may
be discretized as∑

k

∫
S[i; k]

h�u dS≈�; �[i] =
∑

in∈I(i)

∑
l=g;o;w

hl[i]�
l
[i]v

l
[in]S[i; k(in)] (10)

where S[i; k] denotes the kth part of the surface boundary of the ith control volume, and S[i; k(in)]
the part of the surface between the ith and inth control volumes.
The conductive heat �ow for the ith control volume is approximated by∫

S[i]
(k∇T ) dS � − ∑

j∈Mi

�[ij]T[ j] (11)

where �[ij] are the conductivity coupling coe�cients, and the set Mi consists of the indices
for all neighbors of the ith control volume including itself.
Finally, the capacity term is a function of the temperature

@
@t

∫
V
(�u) dV �

∫
V

@
@t
(�u) dV �

∫
V

(
�
@T
@t

)
dV (12)

where

�=
∑

l=g;o;w
�pSlcl�l + cr�r(1− �p) (13)

The term cr = @hr=@T denotes the rock speci�c heat capacity and cl= @hl=@T the speci�c heat
capacity of the phases. Even when the creation or disappearance of phases within each control
volume may provoke large changes per phase, one would expect a more linear and smooth
behavior over the addition of all phases. Space discretization is done by cell centred �nite
di�erence approximation, using an explicit value for the heat capacity at each centre of the
control volumes

@
@t

∫
V[i]
(�u) dV � �[i] @T[i]@t (14)

We have therefore substituted Equations (9)–(11) and (14) into Equation (4) to obtain the
following �nite control volume discretization of the energy

�[i]
@T[i]
@t

+
∑
j∈Mi

�[ij]T[ j] =−�[i] +Q[i] (15)
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which together with a backward Euler time discretization leads to a residual equation with
matrix notation

0=D(T[n+1])
T[n+1] − T[n]

�t[n]
+A(T[n+1])T[n+1] − b(T[n]) (16)

Here, �t[n] = t[n+1] − t[n], D=diag(�[i]), A=(�[ij]) and b=(Q[i] − �[i]). Besides, both the
convection and conduction terms have coe�cients dominated by the rock temperature, which
is almost constant, so that this equation may be linearized as

J[n]�T[n] =−f [n] (17)

where �T[n] = (T[n+1] − T[n]) and

J[n] =
D[n]

�t[n]
+A[n]; f [n] =A[n]T[n] − b[n] (18)

4. TREATMENT OF THE WATER PRESSURE EQUATION

Space discretization for the integral of Equation (8) is done by the simple centred control
volume evaluation

�[i]
@pw[i]
@t

+
nc∑
�=1
��; [i]

@N�[i]
@t

= s[i] (19)

where

�[i] =
(
@R
@pw

)
[i]
; ��; [i] =

(
@R
@N�

)
[i]

(20)

and s[i] denotes the value of the right hand side of Equation (8) at the centre of the ith control
volume.
In the discrete equation (19), the molar mass derivative may be expressed in terms of the

water pressure. This approximation is obtained from Equation (1), which using the divergence
theorem reads

@N�
@t
+
∫
S

∑
l=phase

Cl��
lvl · n dS=Q� (21)

where n is the unit outward normal vector to the boundary surface S, and Q� is the integral
of the source term for component �. Using the following expression for the Darcy velocity
for phase l:

vl=− ∑
m=g;o;w

K
klmr
�m
(∇pm − 	m∇d) (22)

with klmr the generalized relative permeability for coupled multiphase �ow, K the absolute
permeability tensor, �m viscosity of the phase m, pm �uid pressure of phase m, 	m speci�c
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weight of phase m, d the depth, and the transmissibility tensors of each chemical component
� are

tm� =
∑

l=g;o;w
Cl��

lK
klmr
�m

(23)

Hence, the molar mass derivative given in Equation (21) may be rewritten as

@N�
@t
=
∫
S

∑
m=g;o;w

tm� (∇pm − 	m∇d) · n dS +Q� (24)

Besides, the water pressure has been chosen as a primary variable so that the oil and gas
phase pressures are given in terms of the water and the capillary pressures as

po =pw + powc ; pg =po + pogc (25)

and part of the conductivity term is∑
m=g;o;w

tm� ∇pm= ∑
m=g;o;w

tm� ∇pw + (to� + tg� )∇powc + to�∇pogc (26)

Evaluation at the centre of each control volume of the expression that results from substituting
Equation (26) into Equation (24) leads to

@N�[i]
@t

=
∑
j∈Mi

t�[ij]pw[ j] + ��[i]

��[i] =
∑
j∈Mi

((tg�[ij] + t
o
�[ij])p

ow
c[ j] + t

g
�[ij]p

og
c[ j] − g�[ij]d[ j]) +Q�[i]

(27)

where t�[ij] =
∑

l t
l
�[ij] denotes the discrete transmissibilities and g�[ij] the equivalent discrete

gravitation. Substituting the molar mass derivative approximation given by Equation (27) into
Equation (19) gives at each control volume

�i
@pw[i]
@t

+
∑
j∈Mi

�[ij]pw[ j] =
[i] (28)

with

�[ij] =
nc∑
�=1
”�[i]t�[ij]; 
[i] = s[i] −

nc∑
�=1
”�[i]��[i] (29)

Backward Euler time discretization of Equation (28) gives a residual matrix equation for
the water pressure

D(pw[n+1])
pw[n+1] − pw[n]

�t[n]
+A(pw[n+1])pw[n+1] − b(pw[n+1])=0 (30)

with �t[n] = t[n+1] − t[n]. When solving this non-linear equation with the Newton–Rapson
method, we ensure that pw[n(k)] → pw[n+1] when k→ ∞, if our initial guess is ‘good’ enough.
Then, by using Taylor expansion of order one at pw[n(k)] + �pw[n(k)] we get the following
equation for the increment

J[n(k)]�pw[n(k)] =−f [n(k)] (31)
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where n(k) denotes the kth non-linear Newton–Rapson iteration at the nth time level

J[n(k)] =
(
@f
@pw

)[n(k)]
� D[n(k)]

�t[n]
+A[n]; �pw[n(k)] = pw[n(k+1)] − pw[n(k)] (32)

and

f [n(k)] =D[n(k)]
pw[n(k)] − pw[n]

�t[n]
+A[n]pw[n(k)] − b[n]

Note that we do not update A and b for every iteration. The reason for this is that these
calculations are rather expensive, and the accuracy we loose by this approximation may be
neglected.

5. IMPLICIT MOLAR MASS EQUATIONS

Equation (1) is written as

@
@t
N� +

∫
V

∑
l

∇ · (Cl��lvl) dV =Q� (33)

Since the molar mass of phase l is Nl=V l �l, and denoting the inverse of volume for phase
l by al, Equation (33) may be now expressed as

@
@t
N� +

∫
V

∑
l

∇ · (Cl�alN lvl) dV =Q� (34)

Together with the divergence theorem, Equation (34) is equivalent to

@
@t
N� +

∫
S

∑
l
Cl�a

lN lvl · n dS=Q� (35)

where n is the unit outward normal vector to the boundary surface S. This mass transport
equation shall be rewritten in terms of the molar mass of component � in phase l, Nl� =C

l
�N

l,
which leads to

@
@t
N� +

∫
S

∑
l
alN l� v

l · n dS=Q� (36)

A �nite control volume discretization is used to create the numerical model. Space discretiza-
tion of Equation (36) is done by cell centred �nite di�erence approximation. The �ux term
is considered to be continuous across interfaces of area A, so that the surface integral of the
normal component at the boundary of a given volume may be discretized as

@
@t
N�[i] +

∑
is∈Si

∑
l
(alN l� )[in]�

l
[is] =Q�[i]; �l[is] = (v

l · n)[is]A[is] (37)

The index in denotes the upstream volume with respect to each interface, is, of the ith control
volume.
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Time discretization of Equation (37) is done by considering a backward Euler approxima-
tion of the derivative and by keeping the Darcy velocity and the phase volume constant at
time t[n]

N [n+1]�[i] − N [n]�[i]
�t[n]

+
∑
is∈Si

∑
l
(al[n]Nl[n+1]� )[in]�

l[n]
[is] =Q

[n]
�[i] (38)

where �t[n] = t[n+1]− t[n]. The advection term in Equation (38) will be treated implicitly when
using Newton–Rapson. Thus, the molar mass of component � in phase l may be expanded
in terms of the molar mass of the di�erent components as

Nl[n(k+1)]� =Nl[n(k)]� +
∑
�

(
@Nl�
@N�

)[n(k)]
�N [n(k)]� ; �N [n(k)]� =N [n(k+1)]� − N [n(k)]� (39)

where Nl[n(k)]� →Nl[n+1]� when k→ ∞ and index n(k) denotes the kth non-linear Newton–
Rapson iteration at the nth time level. Therefore, the discrete molar mass transport equa-
tion (38) of a chemical component � �owing through a porous media region of a closed
surface S, may be rewritten as

�N [n(k)]�[i]

�t[n]
+
∑
is∈Si

∑
l

(
al[n]

∑
�

(
@Nl�
@N�

)[n(k)]
�N [n(k)]�

)
[in]

�l[n][is] =

[n(k)]
�[i] (40)

with right hand side


[n(k)]�[i] =Q[n]�[i] −
N [n(k)]�[i] − N [n]�[i]

�t[n]
− ∑
is∈Si

∑
l
(al[n]Nl[n(k)]� )[in]�

l[n]
[is] (41)

5.1. Full Jacobian matrix formulation

Considering multicomponent multiphase �uid �ow, the matrix formulation of the molar mass
equilibrium discrete equation (40) is of the form(

I

�t[n]
+A[n(k)]

)
�N[n(k)] = b[n(k)] (42)

For a chemical system consisting of nc components, located on a domain decomposed into
ncv control volumes

(�N[n(k)])�j =�N
[n(k)]
�[ j] ; (b[n(k)])�i =


[n(k)]
�[i]

�i; �j ∈ I; I = {(1; 1); : : : ; (nc; 1); : : : ; (1; ncv); : : : ; (nc; ncv)} (43)

I is the identity matrix, and the matrix A has been ordered in n2cv blocks each of them with
n2c entries of the form

(A[n(k)])�i ; �j =
∑
l
�l [n(k)]�i ; �j (44)
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where for given a phase l; j∈Im(i) denotes a cell which is upstream and is the interface
between cells i and j

�l n[(k)]�i ;�j =0; j =∈ Im(i) else �l n[(k)]�i ;�j = al [n]�l [n]� [is](@N
l
� =@N�)

n[(k)]
[ j]

�ln[(k)]�i ;�i =− ∑
j∈Im(i)

�ln[(k)]�i ;�j
(45)

5.2. Sequential matrix formulation

The discrete molar mass equation (40) may be simpli�ed considering the cross-derivatives
between di�erent components to be negligible. This assumption eliminates the coupling and
makes it possible to achieve greater computer e�ciency by sequential solution of the following
molar mass equations(

I

�t[n]
+A[n(k)]

�

)
�N[n(k)]� = b[n(k)]� ; �=1; : : : ; nc (46)

where for a chemical system consisting of nc components located on a domain decomposed
into ncv cells

(�N[n(k)]� )j=�N
[n(k)]
�[ j] ; (b[n(k)]� )i=


[n(k)]
�[i] ; i; j ∈ {1; : : : ; ncv} (47)

I is the identity matrix and each matrix A� has n2cv entries (A�)
[n(k)]
ij =

∑
l �
l [n(k)]
�i ;�j , which are

de�ned similarly to those of the full Jacobian.
Each set of Equations (17), (31) and (42) or (17), (31) and (46), results in a compact

numerical model, since they allow to �nd all the primary and secondary variables for the new
time step.

6. THREE PHASE SYSTEM

The partial molar mass derivatives which appear in the molar mass discrete equations (42) and
(46) are approximated based on binary system thermodynamics. Roughly speaking, the �ux
has three components; water, oil and gas which may be in either water, oil or gas phase. In
particular, the oil and gas components should be viewed as the hydrocarbon components of
the �ux lumped into one gas and one oil component. This approximation at any �xed time t,
generates for each phase l=w; o; g the partial derivatives

@Nl�
@N�

; �; �=w; o; g (48)

where � and � denote the lumped (grouped) components.

6.1. Single hydrocarbon phase state

The derivatives under consideration (48) depend on the number of phases that are present
in a control volume at that time. The single phase generates two sub-cases corresponding to
being either only oil phase present or only gas phase present

N g = 0: N o =No + Ng; N oo =No and N
o
g =Ng,
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N o = 0: N g =No + Ng; N
g
o =No and N

g
g =Ng,

leading to the unit matrix [
(@Nlo=@No) (@Nlg=@No)

(@Nlo=@Ng) (@Nlg=@Ng)

]
=I (49)

6.2. Two hydrocarbon phase state

Considering a control volume with both oil and gas phases present, the partial derivatives
may be expressed in terms of bubble, 
(pw; T ), and dew point, �(pw; T ),

�=
N go
N g
; 
=

N oo
N o
; N g =N go + N

g
g ; N o =N oo + N

o
g (50)

In order to simplify the calculations it will be useful to introduce the molar fraction of oil
phase in the system

zo =
N o

N
; N =No + Ng =N o + N g (51)

and the molar fraction of oil component zo =No=N . Besides, zo and zo may also be expressed
in terms of the bubble and dew points since

zo =
N o
+ N g�

N
(52)

and it is a straight forward computation to check that

N o

N
=
(N o
+ N g�)=(N )− �


 − �
the left hand side of which is zo, as given in (51), and substituting (52) in the right hand
side gives the desired expression

zo =
zo − �

 − � (53)

Once the variables �, 
, have been de�ned, it is necessary to give a suitable expression of
the quantities to di�erentiate

N oo =
N
o =
zoN; N gg = (1− �)N g = (1− �)(1− zo)N

N go = �N
g = �(1− zo)N; N og = (1− 
)N o = (1− 
)zoN

(54)

The calculation of the derivatives for (54) with respect to either the oil molar mass or the
gas molar mass is now a straightforward task after substituting zo for its corresponding value
as given in (53) and recalling from z0 =N0=N that

@zo
@No

=
1− zo
N

;
@zo
@Ng

=
−zo
N
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To simplify the description, a sketch of these analytical derivatives follows:

@N oo
@No

@N og
@No

@N oo
@Ng

@N og
@Ng


 =



(1− �)


 − �

(1− �)(1− 
)

 − �

− �


 − � −�(1− 
)


 − �






@N go
@No

@N gg
@No

@N go
@Ng

@N gg
@Ng


 =




−�(1− 
)

 − � − (1− �)(1− 
)


 − �
�


 − �

(1− �)


 − �




(55)

It is easy to verify these calculations since the sum of the two matrices above is the identity
matrix, as it should be.

7. NUMERICAL EXAMPLES

This section will illustrate with two di�erent examples the e�ciency of the two novel implicit
molar mass formulations: full Jacobian and sequential Jacobian, within the Athena simulator.
As expected, it will be seen that the new implicit formulations are particularly useful to avoid
the time step constraints that the CFL condition imposes when using the explicit formulation.
Additionally, the robustness of the implicit methods as function of the time step will be
studied.

7.1. A �rst example: The dome

Before proceeding with the numerical experiments, the geological domain and boundary con-
ditions shall be described. The three dimensional domain has 50 m depth on the ends, and
a size of 1000 m× 100 m× 70 m. There are four di�erent layers in the z direction: shale,
sandstone, shale and sandstone again. The lithology for the sandstone has a porosity of
�=0:5 and a permeability of Kx=500mD, Ky=500 mD and Kz=500 mD while the cor-
responding values for the shale are �=0:5 and Kx=5× 10−6 mD, Ky=5× 10−6 mD and
Kz=5× 10−6 mD. The boundary conditions consist of an explicitly given �ux of oil and gas
with value 5× 10−5 mol=m2 s going inwards on the left hand side and an outwards water �ux
with value 6:5× 10−4 mol=m2 s in the right hand side. There are also temperature boundary
conditions of 450 K at the top and 460 K at the bottom. The domain is uniformly subdivided
in each direction as is shown in Plate 1, which serves as an illustration of the Athena output.
In order to validate the two new implicit methods for the molar mass equations, they will be

compared to the explicit solver. The Athena simulator is run for each of these three methods
and the time step has been set to be small enough for the CFL condition to remain inactive
in the explicit case. For these small time steps the reference solution given by the explicit
solver is graphically indistinguishable from the solution obtained with the implicit methods.
Thus, the relevant factor to analyse is how the solution of the implicit formulation varies
as the maximum allowed time step increases. Given an implicit solver, we shall compare
the hydrocarbon saturations, Sl, l=o; g, that result from simulations with di�erent maximum
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Figure 1. Athena simulation of 100y; full Jacobian solution to the left and sequential Jacobian to the
right. The L1 error in saturations, against maximum allowed time step. �t ∈ (0:00235y; 0:6y).

Table I. CPU time statistics in seconds: Athena simulation of 100y with three di�erent solvers.

Max. time step (y) 0.0094 0.0188 0.0376 0.0752 0.15 0.3 0.6

Explicit 2101.89 1361.75 1052.35 1127.57 941.82 1149.89 1126.96
Seq (Implicit) 1595.27 828.85 420.87 224.36 107.49 46.56 28.78
Jac (Implicit) 1628.67 822.07 413.97 208.52 98.56 42.87 26.95

value of the time steps. The error norm is chosen to be ‖Sl�t−Sl�to‖L1 with time steps, �t, that
double from �t=0:00235y until 0:6y using as reference solution, S�to , the one obtained with
maximum time step �to = 0:0006y. Figure 1 shows that the full Jacobian is more robust than
the sequential method as it should be expected, since in the sequential formulation the cross
derivatives have been neglected. Even when the error is bounded below 10%, the sequential
formulation shows an erratic convergence rate for time steps bigger than 0:0376y where,
according to Table I, the explicit method would impose severe CFL conditions.
Concerning the computational time, it may be read in Table I not only that the implicit

solvers are competitive at small time steps, which may of course be due to implementation
dependent factors, but that whilst the CPU time for the explicit method remains bounded
above a quantity close to that obtained when the CFL condition becomes for the �rst time
active, the CPU time for both implicit methods decreases at a rate inversely proportional to
the maximum allowed time step.

7.2. A highly non-linear model

In this subsection numerical results for a full 3D treatment of a domain with a fault shall
be described. The domain has a size of [8:75; 1; 8:75] m× 10 m× [7:5; 2:5; 10] m and 8 m
depth at the left end. It has three di�erent layers both in the x and in the z direction, shale,
sandstone and shale again. The lithologies have the same values as those given in Section 7.1
and the boundary conditions consist of an explicitly given �ux of oil and gas with value

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:447–461



NUMERICAL SIMULATOR: MULTIPHASE FLUX IN POROUS MEDIA 459

Table II. CPU time statistics in seconds: Athena simulation of 20y with three di�erent solvers.

Maximum time-step (y) 0.00235 0.0047 0.0094 0.0188 0.0376 0.0752 0.15

Explicit 1591.09 743.04 415.31 556.41 591.16 592.15 596.06
Seq (Implicit) 1073.7 540.66 235.7 138.72 84.42 46.62 24.58
Jac (Implicit) 1175.85 542.55 241.8 131.12 77.75 41.48 23.01
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Figure 2. Athena simulation of 100y; full Jacobian solution to the left and sequential Jacobian to the
right. The L1 error in saturations, against maximum allowed time step, �t ∈ (0:0012y; 0:15y).

0:2× 10−4 mol=m2 s going inwards on the left hand side and an outwards water �ux with
value 2:5× 10−4 mol=m2 s on the right hand side. Some results of this model simulation with
Athena are shown in Plate 2. In this particular example the system is highly non-linear, so that
the Jacobian variation at each Newton-GMRES step is very high, and the implicit methods
can just be run with a time step about 25 times bigger than the one the CFL condition would
have imposed in the explicit, as may be seen from Table II, while in the simpler case of
Section 7.1 was almost 50 times bigger.
According to Figure 2, the relation between the oil and gas saturation L1-error, ‖Sl�t−Sl�to‖L1 ,

and the time step for both implicit methods, allow us to conclude that, even when the discrete
treatment of cross derivatives yields a natural time step control in the Newton-GMRES, further
improvements should be introduced in order to treat regions where the phase and velocity are
subject to rapid changes. As a step in that direction, a local time domain griding and parallel
processing is currently under study.

8. CONCLUSIONS

We apply numerical techniques to determine the essential dynamical behavior of two novel
implicit formulations for the molar masses in multicomponent, multiphase �ux in porous
media. The Jacobian resulting from the Newton–Rapson algorithm is approximated analytically
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from the dew an bubble point curves. The results indicate that the size of the cross-diagonal
terms in the Jacobian serve as a time step control.
Moreover it can be shown that for regions where the change in velocity and phase is

small, the implicit formulation performs at least a factor of 50 times faster. Hence, altogether
we may conclude that both the implicit formulations for the molar mass of multicomponent,
multiphase porous media exhibit a much better CPU time than the explicit solver at any time
step. Besides, the error remains bounded when using a discretization-derived time step control.
Some animations of these results may be found at the home-pages of the authors.
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Plate 1. Hydrocarbon migration simulated by Athena for 100y with 0:0047y as time step:
(a) Gas saturation; and (b) oil saturation.

Plate 2. Hydrocarbon migration simulated by Athena for 20y with 0:0047y as time step: (a) Gas
saturation; and (b) oil saturation.
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